Basic Usage
Computing performance metrics with {SLmetrics} is straightforward. At its most basic level, {SLmetrics} accepts vectors of <factor>
or <numeric>
values as input. Here are two examples demonstrating its basic usage.
Classification metrics
## 1) actual and predicted
## classes
fct_actual <- factor (c ("A" , "A" , "B" ))
fct_predicted <- factor (c ("B" , "A" , "B" ))
## 2) confusion matrix
confusion_matrix <- SLmetrics:: cmatrix (
actual = fct_actual,
predicted = fct_predicted
)
## 3) summarize confusion
## matrix
summary (confusion_matrix)
Confusion Matrix (2 x 2)
================================================================================
A B
A 1 1
B 0 1
================================================================================
Overall Statistics (micro average)
- Accuracy: 0.67
- Balanced Accuracy: 0.75
- Sensitivity: 0.67
- Specificity: 0.67
- Precision: 0.67
Regression metrics
## 1) actual and predicted
## values
num_actual <- c (10.2 , 12.5 , 14.1 )
num_predicted <- c (9.8 , 11.5 , 14.2 )
## 2) RMSE
SLmetrics:: rmse (
actual = num_actual,
predicted = num_predicted
)
Installation
Stable version
## install stable release
devtools:: install_github (
repo = 'https://github.com/serkor1/SLmetrics@*release' ,
ref = 'main'
)
Development version
## install development version
devtools:: install_github (
repo = 'https://github.com/serkor1/SLmetrics' ,
ref = 'development'
)