## S3 method for class 'factor'
plr(actual, predicted, ...)
## S3 method for class 'factor'
weighted.plr(actual, predicted, w, ...)
## S3 method for class 'cmatrix'
plr(x, ...)
plr(...)
weighted.plr(...)
positive likelihood ratio
plr.factor | R Documentation |
Description
The plr()
-function computes the positive likelihood ratio, also known as the likelihood ratio for positive results, between two vectors of predicted and observed factor()
values. The weighted.plr()
function computes the weighted positive likelihood ratio.
Usage
Arguments
actual
|
A vector of |
predicted
|
A vector of |
…
|
Arguments passed into other methods |
w
|
A |
x
|
A confusion matrix created |
Value
If micro
is NULL (the default), a named <numeric>
-vector of length k
If micro
is TRUE or FALSE, a <numeric>
-vector of length 1
Calculation
The metric is calculated for each class \(k\) as follows,
\[ \frac{\text{Sensitivity}_k}{1 - \text{Specificity}_k} \]
Where sensitivity (or true positive rate) is calculated as \(\frac{\#TP_k}{\#TP_k + \#FN_k}\) and specificity (or true negative rate) is calculated as \(\frac{\#TN_k}{\#TN_k + \#FP_k}\).
When aggregate = TRUE
, the micro
-average is calculated,
\[ \frac{\sum_{k=1}^k \text{Sensitivity}_k}{1 - \sum_{k=1}^k \text{Specificity}_k} \]
Examples
# 1) recode Iris
# to binary classification
# problem
$species_num <- as.numeric(
iris$Species == "virginica"
iris
)
# 2) fit the logistic
# regression
<- glm(
model formula = species_num ~ Sepal.Length + Sepal.Width,
data = iris,
family = binomial(
link = "logit"
)
)
# 3) generate predicted
# classes
<- factor(
predicted as.numeric(
predict(model, type = "response") >` 0.5
),
levels = c(1,0),
labels = c("Virginica", "Others")
)
# 3.1) generate actual
# classes
actual <- factor(
x = iris$species_num,
levels = c(1,0),
labels = c("Virginica", "Others")
)
# 4) evaluate model performance
# with class-wise positive likelihood ratios
cat("Positive Likelihood Ratio", sep = "\n")
plr(
actual = actual,
predicted = predicted
)
cat("Positive Likelihood Ratio (weighted)", sep = "\n")
weighted.plr(
actual = actual,
predicted = predicted,
w = iris$Petal.Length/mean(iris$Petal.Length)
)