## S3 method for class 'factor'
zerooneloss(actual, predicted, ...)
## S3 method for class 'factor'
weighted.zerooneloss(actual, predicted, w, ...)
## S3 method for class 'cmatrix'
zerooneloss(x, ...)
zerooneloss(...)
weighted.zerooneloss(...)
zero-one loss
zerooneloss.factor | R Documentation |
Description
The zerooneloss()
-function computes the zero-one Loss, a classification loss function that calculates the proportion of misclassified instances between two vectors of predicted and observed factor()
values. The weighted.zerooneloss()
function computes the weighted zero-one loss.
Usage
Arguments
actual
|
A vector of |
predicted
|
A vector of |
…
|
Arguments passed into other methods |
w
|
A |
x
|
A confusion matrix created |
Value
A <numeric>
-vector of length 1
Calculation
The metric is calculated as follows,
\[ \frac{\#FP + \#FN}{\#TP + \#TN + \#FP + \#FN} \]
Where \(\#TP\), \(\#TN\), \(\#FP\), and \(\#FN\) represent the true positives, true negatives, false positives, and false negatives, respectively.
Examples
# 1) recode Iris
# to binary classification
# problem
$species_num <- as.numeric(
iris$Species == "virginica"
iris
)
# 2) fit the logistic
# regression
<- glm(
model formula = species_num ~ Sepal.Length + Sepal.Width,
data = iris,
family = binomial(
link = "logit"
)
)
# 3) generate predicted
# classes
<- factor(
predicted as.numeric(
predict(model, type = "response") >` 0.5
),
levels = c(1,0),
labels = c("Virginica", "Others")
)
# 3.1) generate actual
# classes
actual <- factor(
x = iris$species_num,
levels = c(1,0),
labels = c("Virginica", "Others")
)
# 4) evaluate model
# performance using Zero-One Loss
cat(
"Zero-One Loss", zerooneloss(
actual = actual,
predicted = predicted
),
"Zero-One Loss (weigthed)", weighted.zerooneloss(
actual = actual,
predicted = predicted,
w = iris$Petal.Length/mean(iris$Petal.Length)
),
sep = "\n"
)