## S3 method for class 'factor'
dor(actual, predicted, ...)
## S3 method for class 'factor'
weighted.dor(actual, predicted, w, ...)
## S3 method for class 'cmatrix'
dor(x, ...)
## Generic S3 method
dor(...)
## Generic S3 method
weighted.dor(
...,
w )
Diagnostic Odds Ratio
dor.factor | R Documentation |
Description
A generic function for the diagnostic odds ratio in classification tasks. Use weighted.dor()
weighted diagnostic odds ratio.
Usage
Arguments
actual
|
A vector of |
predicted
|
A vector of |
…
|
micro = NULL, na.rm = TRUE Arguments passed into other methods |
w
|
A |
x
|
A confusion matrix created |
Value
A <numeric>
-vector of length 1
Definition
Let \(\hat{\alpha} \in [0, \infty]\) be the effectiveness of the classifier. The diagnostic odds ratio of the classifier is calculated as,
\[ \hat{\alpha} = \frac{\text{\#TP} \text{\#TN}}{\text{\#FP} \text{\#FN}} \]
Where:
-
\(\text{\#TP}\) is the number of true positives
-
\(\text{\#TN}\) is the number of true negatives
-
\(\text{\#FP}\) is the number of false positives
-
\(\text{\#FN}\) is the number of false negatives
Examples
# 1) recode Iris
# to binary classification
# problem
$species_num <- as.numeric(
iris$Species == "virginica"
iris
)
# 2) fit the logistic
# regression
<- glm(
model formula = species_num ~ Sepal.Length + Sepal.Width,
data = iris,
family = binomial(
link = "logit"
)
)
# 3) generate predicted
# classes
<- factor(
predicted as.numeric(
predict(model, type = "response") > 0.5
),levels = c(1,0),
labels = c("Virginica", "Others")
)
# 3.1) generate actual
# classes
<- factor(
actual x = iris$species_num,
levels = c(1,0),
labels = c("Virginica", "Others")
)
# 4) evaluate model performance
# with Diagnostic Odds Ratio
cat("Diagnostic Odds Ratio", sep = "\n")
dor(
actual = actual,
predicted = predicted
)
cat("Diagnostic Odds Ratio (weighted)", sep = "\n")
weighted.dor(
actual = actual,
predicted = predicted,
w = iris$Petal.Length/mean(iris$Petal.Length)
)