## S3 method for class 'numeric'
rmse(actual, predicted, ...)
## S3 method for class 'numeric'
weighted.rmse(actual, predicted, w, ...)
rmse(...)
weighted.rmse(...)
root mean squared error
rmse.numeric | R Documentation |
Description
The rmse()
-function computes the root mean squared error between the observed and predicted <numeric>
vectors. The weighted.rmse()
function computes the weighted root mean squared error.
Usage
Arguments
actual
|
A |
predicted
|
A |
…
|
Arguments passed into other methods. |
w
|
A |
Value
A <numeric>
vector of length 1.
Calculation
The metric is calculated as,
\[ \sqrt{\frac{1}{n} \sum_i^n (y_i - \upsilon_i)^2} \]
Where \(y_i\) and \(\upsilon_i\) are the actual
and predicted
values respectively.
Examples
# 1) fit a linear
# regression
<- lm(
model ~ .,
mpg data = mtcars
)
# 1.1) define actual
# and predicted values
# to measure performance
<- mtcars$mpg
actual <- fitted(model)
predicted
# 2) evaluate in-sample model
# performance using Root Mean Squared Error (RMSE)
cat(
"Root Mean Squared Error", rmse(
actual = actual,
predicted = predicted,
),"Root Mean Squared Error (weighted)", weighted.rmse(
actual = actual,
predicted = predicted,
w = mtcars$mpg/mean(mtcars$mpg)
),sep = "\n"
)