## S3 method for class 'factor'
recall(actual, predicted, micro = NULL, na.rm = TRUE, ...)
## S3 method for class 'factor'
weighted.recall(actual, predicted, w, micro = NULL, na.rm = TRUE, ...)
## S3 method for class 'cmatrix'
recall(x, micro = NULL, na.rm = TRUE, ...)
## S3 method for class 'factor'
sensitivity(actual, predicted, micro = NULL, na.rm = TRUE, ...)
## S3 method for class 'factor'
weighted.sensitivity(actual, predicted, w, micro = NULL, na.rm = TRUE, ...)
## S3 method for class 'cmatrix'
sensitivity(x, micro = NULL, na.rm = TRUE, ...)
## S3 method for class 'factor'
tpr(actual, predicted, micro = NULL, na.rm = TRUE, ...)
## S3 method for class 'factor'
weighted.tpr(actual, predicted, w, micro = NULL, na.rm = TRUE, ...)
## S3 method for class 'cmatrix'
tpr(x, micro = NULL, na.rm = TRUE, ...)
recall(...)
sensitivity(...)
tpr(...)
weighted.recall(...)
weighted.sensitivity(...)
weighted.tpr(...)
recall
recall.factor | R Documentation |
Description
The recall()
-function computes the recall, also known as sensitivity or the True Positive Rate (TPR), between two vectors of predicted and observed factor()
values. The weighted.recall()
function computes the weighted recall.
Usage
Arguments
actual
|
A vector of |
predicted
|
A vector of |
micro
|
A |
na.rm
|
A |
…
|
Arguments passed into other methods |
w
|
A |
x
|
A confusion matrix created |
Value
If micro
is NULL (the default), a named <numeric>
-vector of length k
If micro
is TRUE or FALSE, a <numeric>
-vector of length 1
Calculation
The metric is calculated for each class \(k\) as follows,
\[ \frac{\#TP_k}{\#TP_k + \#FN_k} \]
Where \(\#TP_k\) and \(\#FN_k\) is the number of true positives and false negatives, respectively, for each class \(k\).
Examples
# 1) recode Iris
# to binary classification
# problem
$species_num <- as.numeric(
iris$Species == "virginica"
iris
)
# 2) fit the logistic
# regression
<- glm(
model formula = species_num ~ Sepal.Length + Sepal.Width,
data = iris,
family = binomial(
link = "logit"
)
)
# 3) generate predicted
# classes
<- factor(
predicted as.numeric(
predict(model, type = "response") >` 0.5
),
levels = c(1,0),
labels = c("Virginica", "Others")
)
# 3.1) generate actual
# classes
actual <- factor(
x = iris$species_num,
levels = c(1,0),
labels = c("Virginica", "Others")
)
# 4) evaluate class-wise performance
# using Recall
# 4.1) unweighted Recall
recall(
actual = actual,
predicted = predicted
)
# 4.2) weighted Recall
weighted.recall(
actual = actual,
predicted = predicted,
w = iris$Petal.Length/mean(iris$Petal.Length)
)
# 5) evaluate overall performance
# using micro-averaged Recall
cat(
"Micro-averaged Recall", recall(
actual = actual,
predicted = predicted,
micro = TRUE
),
"Micro-averaged Recall (weighted)", weighted.recall(
actual = actual,
predicted = predicted,
w = iris$Petal.Length/mean(iris$Petal.Length),
micro = TRUE
),
sep = "\n"
)