Recall

recall.factor R Documentation

Description

A generic funcion for the Recall. Use weighted.fdr() for the weighted Recall.

Other names

Sensitivity, True Positive Rate

Usage

## S3 method for class 'factor'
recall(actual, predicted, micro = NULL, na.rm = TRUE, ...)

## S3 method for class 'factor'
weighted.recall(actual, predicted, w, micro = NULL, na.rm = TRUE, ...)

## S3 method for class 'cmatrix'
recall(x, micro = NULL, na.rm = TRUE, ...)

## S3 method for class 'factor'
sensitivity(actual, predicted, micro = NULL, na.rm = TRUE, ...)

## S3 method for class 'factor'
weighted.sensitivity(actual, predicted, w, micro = NULL, na.rm = TRUE, ...)

## S3 method for class 'cmatrix'
sensitivity(x, micro = NULL, na.rm = TRUE, ...)

## S3 method for class 'factor'
tpr(actual, predicted, micro = NULL, na.rm = TRUE, ...)

## S3 method for class 'factor'
weighted.tpr(actual, predicted, w, micro = NULL, na.rm = TRUE, ...)

## S3 method for class 'cmatrix'
tpr(x, micro = NULL, na.rm = TRUE, ...)

## Generic S3 method
recall(
 ...,
 micro = NULL,
 na.rm = TRUE
)

## Generic S3 method
sensitivity(
 ...,
 micro = NULL,
 na.rm = TRUE
)

## Generic S3 method
tpr(
 ...,
 micro = NULL,
 na.rm = TRUE
)

## Generic S3 method
weighted.recall(
 ...,
 w,
 micro = NULL,
 na.rm = TRUE
)

## Generic S3 method
weighted.sensitivity(
 ...,
 w,
 micro = NULL,
 na.rm = TRUE
)

## Generic S3 method
weighted.tpr(
 ...,
 w,
 micro = NULL,
 na.rm = TRUE
)

Arguments

actual

A vector of - of length \(n\), and \(k\) levels.

predicted

A vector of -vector of length \(n\), and \(k\) levels.

micro

A -value of length \(1\) (default: NULL). If TRUE it returns the micro average across all \(k\) classes, if FALSE it returns the macro average.

na.rm

A value of length \(1\) (default: TRUE). If TRUE, NA values are removed from the computation. This argument is only relevant when micro != NULL. When na.rm = TRUE, the computation corresponds to sum(c(1, 2, NA), na.rm = TRUE) / length(na.omit(c(1, 2, NA))). When na.rm = FALSE, the computation corresponds to sum(c(1, 2, NA), na.rm = TRUE) / length(c(1, 2, NA)).

micro = NULL, na.rm = TRUE Arguments passed into other methods

w

A <numeric>-vector of length \(n\). NULL by default.

x

A confusion matrix created cmatrix().

Value

If micro is NULL (the default), a named <numeric>-vector of length k

If micro is TRUE or FALSE, a <numeric>-vector of length 1

Definition

Let \(\hat{\rho} \in [0, 1]\) be the proportion of true positives among the actual positives. The recall of the classifier is calculated as,

\[ \hat{\rho} = \frac{\#TP_k}{\#TP_k + \#FN_k} \]

Where:

  • \(\#TP_k\) is the number of true positives, and

  • \(\#FN_k\) is the number of false negatives.

Examples

# 1) recode Iris
# to binary classification
# problem
iris$species_num <- as.numeric(
  iris$Species == "virginica"
)

# 2) fit the logistic
# regression
model <- glm(
  formula = species_num ~ Sepal.Length + Sepal.Width,
  data    = iris,
  family  = binomial(
    link = "logit"
  )
)

# 3) generate predicted
# classes
predicted <- factor(
  as.numeric(
    predict(model, type = "response") > 0.5
  ),
  levels = c(1,0),
  labels = c("Virginica", "Others")
)

# 3.1) generate actual
# classes
actual <- factor(
  x = iris$species_num,
  levels = c(1,0),
  labels = c("Virginica", "Others")
)

# 4) evaluate class-wise performance
# using Recall

# 4.1) unweighted Recall
recall(
  actual    = actual,
  predicted = predicted
)

# 4.2) weighted Recall
weighted.recall(
  actual    = actual,
  predicted = predicted,
  w         = iris$Petal.Length/mean(iris$Petal.Length)
)

# 5) evaluate overall performance
# using micro-averaged Recall
cat(
  "Micro-averaged Recall", recall(
    actual    = actual,
    predicted = predicted,
    micro     = TRUE
  ),
  "Micro-averaged Recall (weighted)", weighted.recall(
    actual    = actual,
    predicted = predicted,
    w         = iris$Petal.Length/mean(iris$Petal.Length),
    micro     = TRUE
  ),
  sep = "\n"
)