Skip to contents
## load libraries
library(cryptoQuotes)

{cryptoQuotes} were built with {quantmod} and {TTR} in mind. To demonstrate how {cryptoQuotes} works with these packages, we will use the following data,

## Get daily 
## Bitcoin from 
## the spot market
BTC <- get_quote(
  ticker   = "BTCUSD",
  source   = "kraken",
  futures  = FALSE,
  interval = "1d",
  from     = "2024-01-01"
)

Cryptocurrency and quantmod

The BTC can be passed into the charting functions, or be used in the quantmod::tradeModel()-functions.

Building Cryptocurrency Trade Models

Below is an example on how to use the quantmod::tradeModel()-function with the BTC-object,

## 1) specify
## the model
lhs <- quantmod::Next(quantmod::OpCl(BTC))
rhs <- quantmod::Lag(quantmod::OpHi(BTC),0:3)

BTC_model <- quantmod::specifyModel(
  formula = lhs ~ rhs
)

## 2) build the
## model
built_model <-  quantmod::buildModel(
  x            = BTC_model,
  method       = 'lm',
  training.per = range(head(zoo::index(BTC), 10))
)

## 3) trade the model
quantmod::tradeModel(built_model, leverage = 2)
#> 
#>   Model:  lm1736743518.54221 
#> 
#>   C.A.G.R.:  39.35%  H.P.R.:  28.26% 
#> 
#>   Returns by period summary:
#> 
#>              weekly monthly quarterly yearly
#>     Max.     25.77%  48.73%    31.94% 51.46%
#>     3rd Qu.   8.02%  29.69%    22.19% 51.46%
#>     Mean      2.19%   9.12%    15.49% 51.46%
#>     Median   -1.77%   1.88%    12.43% 51.46%
#>     2rd Qu.  -5.24% -13.74%     7.27% 51.46%
#>     Min.    -21.19% -18.69%     2.10% 51.46%
#> 
#>   Period to date returns:
#> 
#>              weekly monthly quarterly yearly
#>              17.33%  12.43%    12.43% 51.46%

Charting Cryptocurrency with {quantmod}

## chart the
## BTC with candlesticks
## and Bollinger BAnds
quantmod::chartSeries(
  x    = BTC,
  type = "candlesticks",
  TA   = c(
    quantmod::addBBands()
  )
)

Cryptocurrency Market Data in Quantmod

Cryptocurrency and {TTR}

Below is an example on how to use the BBands()-function from {TTR},

# 1) calculate
# Bollinger Bands
indicator <- TTR::BBands(
  quantmod::HLC(BTC)
)

# 2) add to the 
# cryptocurrency quote
BTC <- cbind(
  BTC, 
  indicator
)
Bitcoin with Bollinger Bands using TTR
index open high low close volume dn mavg up pctB
2024-07-14 59222.8 61373.5 59222.8 60810 1537.756 55169.562 59456.318 63743.075 0.618
2024-07-15 60810 64900 60704.5 64764.2 2989.713 55003.009 59555.733 64108.457 0.928
2024-07-16 64764.3 65416.3 62466 65088.7 3185.162 54749.989 59705.927 64661.864 0.966
2024-07-17 65077.1 66100.3 63853.1 64120 1952.563 54500.19 59865.557 65230.923 0.95
2024-07-18 64120.1 65097.1 63225.5 63960.7 1495.398 54366.588 60030.907 65695.225 0.859
2024-07-19 63960.7 67429 63350 66708.9 2068.886 54084.048 60284.542 66485.036 0.947